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Abstract

Perovskite-type RRYB and RRRC (R =, Sc) form a continuous solid solution, RIQRC;_,, in the range of & x < 1 with cubic structure
(space groupPm3m, Z=1). The values of the microhardness of BhC,_, for x=0, 0.25, 0.50, 0.75 and 1.00 are investigated a4,
4.94+0.1,5.5+0.2, 6.4+ 0.2 and 7.5: 0.15 GPa, respectively. On the other hand, the values of the microhardness eBSERhfor x=0,
0.25,0.50,0.75and 1.00 are 49.2, 6.1+ 0.2, 7.4+ 0.2, 8.9+ 0.2 and 9.6+ 0.1 GPa, respectively. Thus, the microhardness ofJBR®,
continuously becomes larger with increasing boron content. The oxidation onset temperatures®fC{Rhor x=0, 0.25, 0.50, 0.75 and
1.00 are 604, 631, 655, 687 and 978 K, respectively. On the other hand, the oxidation onset temperaturesBEScRbr x=0, 0.25,
0.50, 0.75 and 1.00 are 674, 675, 695, 725 and 753 K, respectively. Thermogravimetric analysis of the phase indicates that the oxidation onset
temperature also increases with boron content. Thus, it appears that both mechanical strength and chemical stability;Bf, e Ritlase
essentially depend on its boron content. Ab initio calculations have been performed to obtain the equilibrium lattice constants and the bulk
moduli. The calculated lattice constants are in excellent agreement with experimental results.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction ing transitions, insulator—-metal transitions, ion conductance,
dielectric properties and ferroelasticifl—4]. However,
Perovskite related oxides have been studied because ohonoxide perovskite-type compounds such as the ternary
their many interesting properties, including superconduct- borides RRBB (R =rare earth)[5-7] have not yet been
studied well. Investigation of the synthesis and fundamen-
* Corresponding author. tal characterization of nonoxide perovskite-type compounds
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In this study, the authors synthesize the BRIC;_, 0.420
phase, namely, solid solution of the RIBA-RRhC sys- B
tem[8,9]. In this structure, R is at the eight corners of the
cube, Rh is at the six face-centered sites and B and/or C K 2
at the body-centered site. Boron and carbon are selected .. | a
because they have similar atomic radii, moreover, they are o
known to form covalent bonds with transition elements.
Solid solubility in the system of RRB [10-12}-RRC
is investigated. Then, microhardness and oxidation resis-
tance of the samples are measured. The role of the atoms
in the body-centered site in stabilizing this phase is ana-
lyzed from the obtained data of microhardness and oxidation
resistance.

0.410 =

Lattice parameter, a/nm

0.405 |~

2. Experimental u

The samples were prepared by the arc-melting method ina n
titanium-gettered argon atmosphere using 99.9% pure Y, Sc,  0.400 Lt b b e |l
Rh, B and 99.999% pure C as raw materials. Mixtures of the ¢ b % b te a3

. . . X in RRh3BxC1x
starting materials, about 2 g of each, were melted for 3minin
anargon arc plasmaflame using a dc power source at 20 V. angig 1. | attice parameteras a function of in the RRhB,Cy._, phase.[):
100 A. The samples were turned over and were remelted threer = v; (m): R=Sc.
times under the same conditions. The synthesized samples
were wrapped intantalum foiland annealed at 1573 Kfor20h By varying the values ofr, the solid solubility and
in vacuo to ensure homogeneity and accurate comparison ofthe resulting change of the crystal structure were studied.
results. Crystal structure analysis reveals that BBrand RRRC
For the chemical analysis, the samples were fused usingform a continuous solid solution as REB).C1_, (0<x<1)
NaHSQ, powder as a flux reagent and then the resulting and the phase has a perovskite-type cubic structure (space
material was dissolved in HCI. The chemical composition group:Pm3m; Z=1).Fig. 1shows the relationship between
of each solution was analyzed by induction-coupled plasmax and the lattice parameter of RRhgB,C;1_,. The lattice
atomic emission spectrometry (ICP-AES) using Zn as the parametern of YRh3B,Ci_, for x=0, 0.25, 0.50, 0.75 and
internal standard. The crystal structures and lattice parame-1.00 are 0.41262(4), 0.41428(6), 0.41462(5), 0.41506(5) and
ters of the phases were characterized by the powder X-ray0.41675(5) nm, respectively. On the other hand, the lattice
diffraction (XRD) method using Cu& as an X-ray source. parameten of ScCRhB,C;_, for x=0, 0.25, 0.50, 0.75 and
The microhardness of the samples was measured at room tem1.00 are 0.40296(6), 0.40347(3), 0.40477(3), 0.40686(9) and
perature using a square-base diamond pyramid as anindente.40799(3) nm, respectively. As shownhig. 1, the lattice
Aload of 300 g was applied for 15 s and 10 impressions were parameter: does not change linearly with which suggests
recorded for each sample. The obtained values were averagethat the interaction of boron and carbon in the compound
and the experimental error was estimated. Thermogravimet-changes withx in a complex manner.
ric (TG) analysis was performed between room temperature  The microhardness of the borides and carbides, one of
and 1473 K to study the oxidation resistance of the samplesthe mechanical propertfl3-16] was examined for each
in air. Pulverized samples of about 25 mg were heated in air sample.Fig. 2 shows the microhardness as a function of
at a rate of 10 K minZ. x in RRgB,C1_,. The values of the microhardness of
YRh3B,C;y_, for x=0, 0.25, 0.50, 0.75 and 1.00 are 44,
4.94+0.1, 5.5+£0.2, 6.4+-0.2 and 7.5 0.15GPa, respec-

3. Results and discussion tively. On the other hand, the values of the microhardness
of ScRkB,C;_, for x=0, 0.25, 0.50, 0.75 and 1.00 are

The prepared samples have a silvery metallic luster. Dur- 4.5+ 0.2, 6.1+ 0.2, 7.4+ 0.2, 8.9+ 0.2 and 9.6:t 1 GPa,
ing arc-melting, almost no weight loss due to evaporation respectively. Thus, the microhardness of BB{C;_, con-
of the constituent elements was observed. Chemical analy-tinuously becomes larger with increasing boron content.
sis revealed that the compositions of the synthesized samples TG analysis was performed on the samplég. 3shows
were almostthe same as the atomic ratios of the starting matechanges in the oxidation onset temperature with variations
rials. In addition, contamination from the tungsten electrode in x. The oxidation onset temperatures of YJBhC;_, for
and the copper hearth used in the arc-melting method wasx=0, 0.25, 0.50, 0.75 and 1.00 are 604, 631, 655, 687 and
negligible. 978 K, respectively. On the other hand, the oxidation onset
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10 The electronegativities of Y, Sc, Rh and the body-centered
3 atoms B and C are 1.2, 1.3, 2.2, 2.0 and L8], respec-
tively. This suggests that covalency in this phase increases
with increasing boron content. Hence, both microhardness
and oxidation onset temperature are essentially proportional
to the stability of the compound. The results of this study

g g indicate that the mechanical strength and chemical sta-
@ - bility of the RRhB,C;1_, phase increase with the boron
s [ ; ¢ content.
g I Hardness is known as a material parameter which indi-
g T cates resistance to elastic/plastic deformation. To describe the
E B % origin at atomistic scale theoretically, first principles calcu-
e ; lations were performed to estimate the bulk modBjifrom
g 6 the volume dependence of the total energy. We use the ab ini-
= % tio projected augmented wave (PAW) metHd8,19] with
B the Vienna Ab initio Simulation Program (VASP20-22]
5 [— 5 Minimization of the free energy over the degrees of freedom
i of the electron densities and atomic positions was performed
i ?? using the conjugated-gradient iterative minimization tech-
4 SRR NS S A A S| nique[23]. The cutoff energy for the plane wave expansion
0 0.2 0.4 0.6 0.8 1.0

was takentobe 257.2 eV for REBiand 286.7 eV for RR{C,
respectively, which was large enough to obtain good conver-
gence. In the Brillouin zone (BZ) integrationsx8 x 8k-
points were used. The exchange—correlation energy has been
calculated within the generalized gradient approximation
temperatures of ScRB.C;_, forx=0, 0.25,0.50, 0.75and  [24]. The total energyy, is calculated as a function of the
1.00 are 674, 675, 695, 725 and 753K, respectively. The lattice parameter. The variation in the total energy as a func-
values also increase with increasing boron content. tion of the lattice parameter is shownhig. 4 for SCRiC.

In the present study, the authors have investigated the roleFrom the curve shown ifig. 4, one can estimate the equi-
of the body-centered atoms in stabilizing the perovskite-type librium lattice parametetg and the bulk modulusg, which
structure. Both microhardness and oxidation onset tempera-
ture increase with increasing boron conteimtRRhB,C1 .

X in RRhaBxC1-x

Fig. 2. Vickers microhardness as a functioncai the RRRB,C;_, phase.
(O):R=Y; (W): R=Sc.
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Fig. 3. Oxidation onset temperature as a function of the RRRB,C;_,

X in RRh3BxC1-x

phase.[(): R=Y; (M): R=Sc.

Lattice parameter, a/ nm

Fig. 4. The calculated total energy per formula unit as a function of the
lattice parameter for ScRE.
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Table 1 Tohoku University. V.K. thankfully acknowledges hospital-
Calculated lattice parameterof and the bulk modulusi) ity at IMR, Tohoku University. We are grateful to the staff of
ao (Nm) B (GPa) the Center for Computational Science of IMR, Tohoku Uni-
YRh3B 0.422 177.4 versity for allowing the use of the Hitachi RS-8000/64 super
YRh3C 0.419 199.9 computing facility and their kind support.
ScRhB 0.413 200.1
ScRhC 0.410 222.3
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